Coupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity

نویسندگان

  • Mary Wheeler
  • Guangri Xue
  • Ivan Yotov
چکیده

We study the numerical approximation on irregular domains with general grids of the system of poroelasticity, which describes fluid flow in deformable porous media. The flow equation is discretized by a multipoint flux mixed finite element method and the displacements are approximated by a continuous Galerkin finite element method. First order convergence in space and time is established in appropriate norms for the pressure, velocity, and displacement. Numerical results are presented that illustrate the behavior of the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material

This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...

متن کامل

A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids

In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since they are developed within a variational framework as mixed finite element methods with special approximating spaces and quadrature rules. The latter all...

متن کامل

Conservative P1 Conforming and Nonconforming Galerkin FEMs: Effective Flux Evaluation via a Nonmixed Method Approach

Given a P1 conforming or nonconforming Galerkin finite element method (GFEM) solution ph, which approximates the exact solution p of the diffusion-reaction equation −∇ · K∇p+ αp = f with full tensor variable coefficient K, we evaluate the approximate flux uh to the exact flux u = −K∇p by a simple but physically intuitive formula over each finite element. The flux is sought in the continuous (in...

متن کامل

A comparative study on the weak Galerkin, discontinuous Galerkin, and mixed finite element methods

This paper presents a comparative study on the newly introduced weak Galerkin finite element methods (WGFEMs) with the widely accepted discontinuous Galerkin finite element methods (DGFEMs) and the classical mixed finite element methods (MFEMs) for solving second-order elliptic boundary value problems. We examine the differences, similarities, and connection among these methods in scheme formul...

متن کامل

A Multiscale Mortar Multipoint Flux Mixed Finite Element Method

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012